Inhibition of DNA and Histone Methylation by 5-Aza-2′-Deoxycytidine (Decitabine) and 3-Deazaneplanocin-A on Antineoplastic Action and Gene Expression in Myeloid Leukemic Cells

نویسندگان

  • Richard L. Momparler
  • Sylvie Côté
  • Louise F. Momparler
  • Youssef Idaghdour
چکیده

Epigenetic alterations play an important role in the development of acute myeloid leukemia (AML) by silencing of genes that suppress leukemogenesis and differentiation. One of the key epigenetic changes in AML is gene silencing by DNA methylation. The importance of this alteration is illustrated by the induction of remissions in AML by 5-aza-2'-deoxycytidine (5-AZA-CdR, decitabine), a potent inhibitor of DNA methylation. However, most patients induced into remission by 5-AZA-CdR will relapse, suggesting that a second agent should be sought to increase the efficacy of this epigenetic therapy. An interesting candidate for this purpose is 3-deazaneplanocin A (DZNep). This analog inhibits EZH2, a histone methyltransferase that trimethylates lysine 27 histone H3 (H3K27me3), a marker for gene silencing. This second epigenetic silencing mechanism also plays an important role in leukemogenesis as shown in preclinical studies where DZNep exhibits potent inhibition of colony formation by AML cells. We reported previously that 5-AZA-CdR in combination with DZNep exhibits a synergistic antineoplastic action against human HL-60 AML cells and the synergistic activation of several tumor suppressor genes. In this report, we showed that this combination also induced a synergistic activation of apoptosis in HL-60 cells. The synergistic antineoplastic action of 5-AZA-CdR plus DZNep was also observed on a second human myeloid leukemia cell line, AML-3. In addition, 5-AZA-CdR in combination with the specific inhibitors of EZH2, GSK-126, or GSK-343, also exhibited a synergistic antineoplastic action on both HL-60 and AML-3. The combined action of 5-AZA-CdR and DZNep on global gene expression in HL-60 cells was investigated in greater depth using RNA sequencing analysis. We observed that this combination of epigenetic agents exhibited a synergistic activation of hundreds of genes. The synergistic activation of so many genes that suppress malignancy by 5-AZA-CdR plus DZNep suggests that epigenetic gene silencing by DNA and histone methylation plays a major role in leukemogenesis. Targeting DNA and histone methylation is a promising approach that merits clinical investigation for the treatment of AML.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epigenetic effects of decitabine on acute lymphoblastic and acute promyelocytic leukemia cells

Background: Decitabine (5-aza-2'-deoxycytidine, DAC) is a deoxycytidine analog currently used as an effective drug against myelodysplastic syndromes and acute myeloid leukemia. Although various studies have pointed out the epigenetic effects of this drug, its epigenetic mechanisms in different leukemic cell lines are not specified. In this lab trial study, possible epigenetic effects of decitab...

متن کامل

Effects of 5-aza-2ˈ-deoxycytidine and Valproic Acid on Epigenetic-modifying DNMT1 Gene Expression, Apoptosis Induction and Cell Viability in Hepatocellular Carcinoma WCH-17 cell line

Background: DNA molecule of the eukaryotic cells is found in the form of a nucleoprotein complex named chromatin. Two epigenetic modifications are critical for transcriptional control of genes, including acetylation and DNA methylation. Hypermethylation of tumor suppressor genes is catalyzed by various DNA methyltransferase enzymes (DNMTs), including DNMT1, DNMT2, and DNMT3. The most well chara...

متن کامل

Inhibition of DNA methyltransferase activates tumor necrosis factor alpha-induced monocytic differentiation in acute myeloid leukemia cells.

Transcriptional silencing via promoter methylation of genes important for cell growth and differentiation plays a key role in myeloid leukemogenesis. We find that clinically achievable levels of 5-aza-2'-deoxycytidine (5-AZA-dC), a potent inhibitor of DNA methylation, can modify chromatin and restore the ability of tumor necrosis factor alpha (TNFalpha) to induce monocytic differentiation of th...

متن کامل

DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation.

DNA methylation, histone modifications, and nucleosomal occupancy collaborate to cause silencing of tumor-related genes in cancer. The development of drugs that target these processes is therefore important for cancer therapy. Inhibitors of DNA methylation and histone deacetylation have been approved by the Food and Drug Administration for treatment of hematologic malignancies. However, drugs t...

متن کامل

Effect of 5-aza-2′-deoxycytidine on p16INK4a, p14ARF, p15INK4b Genes Expression, Cell Viability, and Apoptosis in PLC/PRF5 and MIA Paca-2 Cell Lines

Background: Mammalian cell division is regulated by a complex includes cyclin-dependent kinases (Cdks) and cyclins, Cdk/cyclin complex. The activity of the complex is regulated by Cdk inhibitors (CKIs) compressing CDK4 (INK4) and CDK-interacting protein/kinase inhibitory protein (CIP/KIP) family. Hypermethylation of CKIs has been reported in various cancers. DNA methyltransferase inhibitors (DN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017